Generalized Image Acquisition and Analysis

Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point

We investigate the problem of identifying the position of a viewer inside a room of planar mirrors with unknown geometry in conjunction with the room’s shape parameters. We consider the observations to consist of angularly resolved depth measurements of a single scene point that is being observed via many multi-bounce interactions with the specular room geometry. Applications of this problem statement include areas such as calibration, acoustic echo cancelation and time-of-flight imaging. We theoretically analyze the problem and derive sufficient conditions for a combination of convex room geometry, observer, and scene point to be reconstructable. The resulting constructive algorithm is exponential in nature and, therefore, not directly applicable to practical scenarios. To counter the situation, we propose theoretically devised geo- metric constraints that enable an efficient pruning of the solution space and develop a heuristic randomized search algorithm that uses these constraints to obtain an effective solution. We demon- strate the effectiveness of our algorithm on extensive simulations as well as in a challenging real-world calibration scenario.

Projects

A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition

Ivo Ihrke, Ilya Reshetouski, Alkhazur Manakov, Art Tevs, Michael Wand, Hans-Peter Seidel
In: CVPR Workshop on Computational Cameras and Displays (CCD), 2012



Abstract

We describe a system for acquiring reflectance fields of objects without moving parts and without a massively parallel hardware setup. Our system consists of a set of planar mirrors which serve to multiply a single camera and a single projector into a multitude of virtual counterparts. Using this arrangement, we can acquire reflectance fields with an average angular sampling rate of about 120+ view/light pairs per surface point. The mirror system allows for freely programmable illumination with full directional coverage. We employ this setup to realize a 3D acquisition system that employs structured illumination to capture the unknown object geometry, in addition to dense reflectance sampling. On the software side, we combine state-of-the-art 3D reconstruction algorithms with a reflectance sharing technique based on non-negative matrix factorization in order to reconstruct a joint model of geometry and reflectance. We demonstrate for a number of test scenes that the kaleidoscopic approach can acquire complex reflectance properties faithfully. The main limitation is that the multiplexing approach limits the attainable spatial resolution, trading it off for improved directional coverage.
Video

Bibtex

@InProceedings{Ihrke12,
author = {Ivo Ihrke and Ilya Reshetouski and Alkhazur Manakov and Art Tevs and Michael Wand and Hans-Peter Seidel},
title = "{A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition}",
booktitle = {Proceedings of IEEE International Workshop on Computational Cameras and Displays },
pages = "1--8",
year = {2012},
}
Go to project list




Imprint-Dataprotection