Generalized Image Acquisition and Analysis

Volume Stylizer: Tomography-based Volume Painting

Volumetric phenomena are an integral part of standard rendering, yet, no suitable tools to edit characteristic properties are available so far. Either simulation results are used directly, or modifications are high-level, e.g., noise functions to influence appearance. Intuitive artistic control is not possible. We propose a solution to stylize single-scattering volumetric effects. Emission, scattering and extinction become amenable to artistic control while preserving a smooth and coherent appearance when changing the viewpoint. Our approach lets the user define a number of target views to be matched when observing the volume from this perspective. Via an analysis of the volumetric rendering equation, we can show how to link this problem to tomographic reconstruction.

Projects

A Mathematical Model and Calibration Procedure for Galvanometric Laser Scanning Systems

Alkhazur Manakov, Hans-Peter Seidel, Ivo Ihrke
In: Vision, Modeling, and Visualization (VMV 2011)



Abstract

Laser galvanometric scanning systems are commonly used in various fields such as three dimensional scanning, medical imaging, material processing, measurement devices and laser display systems. The systems of such kind suffer from distortions. On top of that they do not have a center of projection, which makes it impossible to use common projector calibration procedures. The paper presents a novel mathematical model to predict the image distortions caused by galvanometric mirror scanning systems. In addition, we describe a calibration procedure for recovering its intrinsic and extrinsic parameters.

Bibtex

@InProceedings{Manakov11,
author = {Alkhazur Manakov and Hans-Peter Seidel and Ivo Ihrke},
title = "{A Mathematical Model and Calibration Procedure for Galvanometric Laser Scanning Systems}",
booktitle = {Proceedings of VMV},
pages = "207--214",
year = {2011},
}
Go to project list




Imprint-Dataprotection