Generalized Image Acquisition and Analysis

Time-resolved 3D Capture of Non-stationary Gas Flows

Fluid simulation is one of the most active research areas in computer graphics. However, it remains difficult to obtain measurements of real fluid flows for validation of the simulated data. In this paper, we take a step in the direction of capturing flow data for such purposes. Specifically, we present the first time-resolved Schlieren tomography system for capturing full 3D, non-stationary gas flows on a dense volumetric grid. Schlieren tomography uses 2D ray deflection measurements to reconstruct a time-varying grid of 3D refractive index values, which directly correspond to physical properties of the flow. We derive a new solution for this reconstruction problem that lends itself to efficient algorithms to robustly work with relatively small numbers of cameras. Our physical system is easy to set up, and consists of an array of relatively low cost rolling-shutter camcorders that are synchronized with a new approach. We demonstrate our method with real measurements, and analyze precision with synthetic data for which ground truth information is available.

Projects

A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging

Alkhazur Manakov, Oliver Klehm, Elmar Eisemann, Hans-Peter Seidel, Ivo Ihrke
SIGGRAPH 2013



Abstract

We propose a non-permanent add-on that enables plenoptic imaging with standard cameras which we refer to as KaleidoCamera. Our design is based on a physical copying mechanism that multiplies a sensor image into a number of identical copies that still carry the plenoptic information of interest. Via different optical filters, we can then recover the desired information. A minor modification of the design also allows for aperture subsampling and, hence, light-field imaging. As the filters in our design are exchangeable, a reconfiguration for different imaging purposes is possible. We show in a prototype setup that high dynamic range, multispectral, polarization, and light-field imaging can be achieved with our design.
Project Page Video Data Set

Bibtex

@article{Manakov:13,
author = {Alkhazur Manakov and John Restrepo and Oliver Klehm and Ramon Hegeds and Elmar Eisemann and Hans-Peter Seidel and Ivo Ihrke},
title = {A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging},
journal = {ACM Trans. on Graphics (SIGGRAPH'13)},
volume = 32, number = 4, year = 2013,
pages = {xx--yy},
}
Go to project list




Imprint-Dataprotection