Generalized Image Acquisition and Analysis

A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition

We describe a system for acquiring reflectance fields of objects without moving parts and without a massively parallel hardware setup. Our system consists of a set of planar mirrors which serve to multiply a single camera and a single projector into a multitude of virtual counterparts. Using this arrangement, we can acquire reflectance fields with an average angular sampling rate of about 120+ view/light pairs per surface point. The mirror system allows for freely programmable illumination with full directional coverage. We employ this setup to realize a 3D acquisition system that employs structured illumination to capture the unknown object geometry, in addition to dense reflectance sampling. On the software side, we combine state-of-the-art 3D reconstruction algorithms with a reflectance sharing technique based on non-negative matrix factorization in order to reconstruct a joint model of geometry and reflectance. We demonstrate for a number of test scenes that the kaleidoscopic approach can acquire complex reflectance properties faithfully. The main limitation is that the multiplexing approach limits the attainable spatial resolution, trading it off for improved directional coverage.

Projects

Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions

Matthias Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, Hendrik P. A. Lensch
In: Proceedings of SIGGRAPH 2010.



Abstract

In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGB×RGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.

Bibtex

@article{hullin2010acquisition,
title={{Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions}},
author={Hullin, M.B. and Hanika, J. and Ajdin, B. and Seidel, H.P. and Kautz, J. and Lensch, H.},
journal={ACM Transactions on Graphics (TOG)},
volume={29},
number={4},
pages={1--7},
issn={0730-0301},
year={2010},
publisher={ACM}
}
Go to project list




Imprint-Dataprotection