Generalized Image Acquisition and Analysis

State of the Art in Computational Fabrication and Display of Material Appearance.

After decades of research on digital representations of material and object appearance, computer graphics has more recently turned to the problem of creating physical artifacts with controllable appearance characteristics. While this work has mostly progressed in two parallel streams – display technologies as well as novel fabrication processes – we believe there is a large overlap and the potential for synergies between these two approaches. In this report, we summarize research efforts from the worlds of fabrication display, and categorize the different approaches into a common taxonomy. We believe that this report can serve as a basis for systematic exploration of the design space in future research.


Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions

Matthias Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, Hendrik P. A. Lensch
In: Proceedings of SIGGRAPH 2010.


In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGB×RGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.


title={{Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions}},
author={Hullin, M.B. and Hanika, J. and Ajdin, B. and Seidel, H.P. and Kautz, J. and Lensch, H.},
journal={ACM Transactions on Graphics (TOG)},
Go to project list