Generalized Image Acquisition and Analysis

Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering

This paper presents a GPU-based, fast, and accurate dynamic height field rendering technique that scales well to large scale height fields. Current real-time rendering algorithms for dynamic height fields employ approximate ray-height field intersection methods, whereas accurate algorithms require pre-computation in the order of seconds to minutes and are thus not suitable for dynamic height field rendering. We alleviate this problem by using maximum mipmaps, a hierarchical data structure supporting accurate and efficient rendering while simultaneously lowering the pre-computation costs to negligible levels. Furthermore, maximum mipmaps allow for view-dependent level-of-detail rendering. In combination with hierarchical ray-stepping this results in an efficient intersection algorithm for large scale height fields.

Projects

Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions

Matthias Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, Hendrik P. A. Lensch
In: Proceedings of SIGGRAPH 2010.



Abstract

In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGB×RGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.

Bibtex

@article{hullin2010acquisition,
title={{Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions}},
author={Hullin, M.B. and Hanika, J. and Ajdin, B. and Seidel, H.P. and Kautz, J. and Lensch, H.},
journal={ACM Transactions on Graphics (TOG)},
volume={29},
number={4},
pages={1--7},
issn={0730-0301},
year={2010},
publisher={ACM}
}
Go to project list




Imprint-Dataprotection