Generalized Image Acquisition and Analysis

Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor

Although volumetric phenomena are important for realistic rendering and can even be a crucial component in the image, the artistic control of the volume’s appearance is challenging. Appropriate tools to edit volume properties are missing, which can make it necessary to use simulation results directly. Alternatively, high-level modifications that are rarely intuitive, e.g., the tweaking of noise function parameters, can be utilized. Our work introduces a solution to stylize single-scattering volumetric effects in static volumes. Hereby, an artistic and intuitive control of emission, scattering and extinction becomes possible, while ensuring a smooth and coherent appearance when changing the viewpoint. Our method is based on tomographic reconstruction, which we link to the volumetric rendering equation. It analyzes a number of target views provided by the artist and adapts the volume properties to match the appearance for the given perspectives. Additionally, we describe how we can optimize for the environmental lighting to match a desired scene appearance, while keeping volume properties constant. Finally, both techniques can be combined. We demonstrate several use cases of our approach and illustrate its effectiveness.

Projects

Animation Cartography - Intrinsic Reconstruction of Shape and Motion

Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber, Hans-Peter Seidel
In: ACM Transactions on Graphics, 2012, 31(2), article 12



Abstract

In this paper, we consider the problem of animation reconstruction, i.e., the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user provided template models. Unlike pre- vious work that addressed this problem, we do not rely on locally conver- gent optimization but present a system that can handle fast motion, tem- porally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspon- dences, which are extended to a dense matching and then used to recon- struct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and inco- herent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark data sets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.
Project Page

Bibtex

@Article{Tevs12:AC,
author = {Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber, Hans-Peter Seidel},
title = "{Animation Cartography - Intrinsic Reconstruction of Shape and Motion}",
journal = {ACM Trans. on Graphics},
volume = 31, number = 02, year = 2012,
pages = article (12),
}
Go to project list




Imprint-Dataprotection