Generalized Image Acquisition and Analysis

Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions

In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGB×RGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.

Projects

Computational Plenoptic Imaging

Gordon Wetzstein, Ivo Ihrke, Douglas Lanman, Wolfgang Heidrich
Computer Graphics Forum 2011



Abstract

The plenoptic function is a ray-based model for light that includes the color spectrum as well as spatial, temporal, and directional variation. Although digital light sensors have greatly evolved in the last years, one fundamental limitation remains: all standard CCD and CMOS sensors integrate over the dimensions of the plenoptic function as they convert photons into electrons; in the process, all visual information is irreversibly lost, except for a two-dimensional, spatially-varying subset - the common photograph. In this state of the art report, we review approaches that optically encode the dimensions of the plenpotic function transcending those captured by traditional photography and reconstruct the recorded information computationally.
Project Page Slides

Bibtex

@Article{Wetzstein11:CPI,
author = {Gordon Wetzstein, Ivo Ihrke, Douglas Lanman, and Wolfgang Heidrich},
title = {Computational Plenoptic Imaging},
journal = {Computer Graphics Forum},
volume = {30},
number = {8},
year = {2011},
pages = {2397--2426},
publisher = {Blackwell Publishing},
}
Go to project list