Generalized Image Acquisition and Analysis

Fluorescent Immersion Range Scanning

The quality of a 3D range scan should not depend on the surface properties of the object. Most active range scanning techniques, however, assume a diffuse reflector to allow for a robust detection of incident light patterns. In our approach we embed the object into a fluorescent liquid. By analyzing the light rays that become visible due to fluorescence rather than analyzing their reflections off the surface, we can detect the intersection points between the projected laser sheet and the object surface for a wide range of different materials. For transparent objects we can even directly depict a slice through the object in just one image by matching its refractive index to the one of the embedding liquid. This enables a direct sampling of the object geometry without the need for computational reconstruction. This way, a high-resolution 3D volume can be assembled simply by sweeping a laser plane through the object. We demonstrate the effectiveness of our light sheet range scanning approach on a set of objects manufactured from a variety of materials and material mixes, including dark, translucent and transparent objects.

Projects

Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point

Ilya Reshetouski, Alkhazur Manakov, Ayush Bhandari, Ramesh Raskar, Hans-Peter Seidel, Ivo Ihrke
CVPR 2013



Abstract

We investigate the problem of identifying the position of a viewer inside a room of planar mirrors with unknown geometry in conjunction with the room’s shape parameters. We consider the observations to consist of angularly resolved depth measurements of a single scene point that is being observed via many multi-bounce interactions with the specular room geometry. Applications of this problem statement include areas such as calibration, acoustic echo cancelation and time-of-flight imaging. We theoretically analyze the problem and derive sufficient conditions for a combination of convex room geometry, observer, and scene point to be reconstructable. The resulting constructive algorithm is exponential in nature and, therefore, not directly applicable to practical scenarios. To counter the situation, we propose theoretically devised geo- metric constraints that enable an efficient pruning of the solution space and develop a heuristic randomized search algorithm that uses these constraints to obtain an effective solution. We demon- strate the effectiveness of our algorithm on extensive simulations as well as in a challenging real-world calibration scenario.

Bibtex

@inproceedings{Reshetouski:13,
author = {Ilya Rehsetouski and Alkhazur Manakov and Ayush Bhandari and Ramesh Raskar and Hans-Peter Seidel and Ivo Ihrke},
title = {Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point},
booktitle = {Proceedings of CVPR},
year = 2013,
pages = {xx--yy},
}
Go to project list