Generalized Image Acquisition and Analysis

Sensor Saturation in Fourier Multiplexed Imaging

Optically multiplexed image acquisition techniques have become increasingly popular for encoding different exposures, color channels, light-fields, and other properties of light onto two-dimensional image sensors. Recently, Fourier-based multiplexing and reconstruction approaches have been introduced in order to achieve a superior light transmission of the employed modulators and better signal-to-noise characteristics of the reconstructed data. We show in this paper that Fourier-based reconstruction approaches suffer from severe artifacts in the case of sensor saturation, i.e. when the dynamic range of the scene exceeds the capabilities of the image sensor. We analyze the problem, and propose a novel combined optical light modulation and computational reconstruction method that not only suppresses such artifacts, but also allows us to recover a wider dynamic range than existing image-space multiplexing approaches.

Projects

Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point

Ilya Reshetouski, Alkhazur Manakov, Ayush Bhandari, Ramesh Raskar, Hans-Peter Seidel, Ivo Ihrke
CVPR 2013



Abstract

We investigate the problem of identifying the position of a viewer inside a room of planar mirrors with unknown geometry in conjunction with the room’s shape parameters. We consider the observations to consist of angularly resolved depth measurements of a single scene point that is being observed via many multi-bounce interactions with the specular room geometry. Applications of this problem statement include areas such as calibration, acoustic echo cancelation and time-of-flight imaging. We theoretically analyze the problem and derive sufficient conditions for a combination of convex room geometry, observer, and scene point to be reconstructable. The resulting constructive algorithm is exponential in nature and, therefore, not directly applicable to practical scenarios. To counter the situation, we propose theoretically devised geo- metric constraints that enable an efficient pruning of the solution space and develop a heuristic randomized search algorithm that uses these constraints to obtain an effective solution. We demon- strate the effectiveness of our algorithm on extensive simulations as well as in a challenging real-world calibration scenario.

Bibtex

@inproceedings{Reshetouski:13,
author = {Ilya Rehsetouski and Alkhazur Manakov and Ayush Bhandari and Ramesh Raskar and Hans-Peter Seidel and Ivo Ihrke},
title = {Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point},
booktitle = {Proceedings of CVPR},
year = 2013,
pages = {xx--yy},
}
Go to project list




Imprint-Dataprotection