Generalized Image Acquisition and Analysis

Eikonal Rendering: Efficient Light Transport in Refractive Objects

We present a new method for real-time rendering of sophisticated lighting effects in and around refractive objects. It enables us to realistically display refractive objects with complex material properties, such as arbitrarily varying refraction index, inhomogeneous attenuation, as well as spatially-varying anisotropic scattering and reflectance properties. User-controlled changes of lighting positions only require a few seconds of update time. Our method is based on a set of ordinary differential equations derived from the eikonal equation, the main postulate of geometric optics. This set of equations allows for fast casting of bent light rays with the complexity of a particle tracer. Based on this concept, we also propose an efficient light propagation technique using adaptive wavefront tracing. Efficient GPU implementations for our algorithmic concepts enable us to render visual effects that were previously not reproducible in this combination in real-time.


Fluorescent Immersion Range Scanning

Matthias Hullin, Martin Fuchs, Ivo Ihrke, Hans-Peter Seidel, Hendrik P. A. Lensch
In: Proceedings of SIGGRAPH 2008.


The quality of a 3D range scan should not depend on the surface properties of the object. Most active range scanning techniques, however, assume a diffuse reflector to allow for a robust detection of incident light patterns. In our approach we embed the object into a fluorescent liquid. By analyzing the light rays that become visible due to fluorescence rather than analyzing their reflections off the surface, we can detect the intersection points between the projected laser sheet and the object surface for a wide range of different materials. For transparent objects we can even directly depict a slice through the object in just one image by matching its refractive index to the one of the embedding liquid. This enables a direct sampling of the object geometry without the need for computational reconstruction. This way, a high-resolution 3D volume can be assembled simply by sweeping a laser plane through the object. We demonstrate the effectiveness of our light sheet range scanning approach on a set of objects manufactured from a variety of materials and material mixes, including dark, translucent and transparent objects.
Project Page Video Data Set


title = "Fluorescent Immersion Range Scanning",
author = "Matthias B. Hullin and Martin Fuchs and Ivo Ihrke and Hans-Peter Seidel and
Hendrik P. A. Lensch",
journal = "ACM Transactions on Graphics",
volume = 27,
number = 3,
month = aug,
year = 2008,
pages = "87:1--87:10",
Go to project list