Generalized Image Acquisition and Analysis

A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition

We describe a system for acquiring reflectance fields of objects without moving parts and without a massively parallel hardware setup. Our system consists of a set of planar mirrors which serve to multiply a single camera and a single projector into a multitude of virtual counterparts. Using this arrangement, we can acquire reflectance fields with an average angular sampling rate of about 120+ view/light pairs per surface point. The mirror system allows for freely programmable illumination with full directional coverage. We employ this setup to realize a 3D acquisition system that employs structured illumination to capture the unknown object geometry, in addition to dense reflectance sampling. On the software side, we combine state-of-the-art 3D reconstruction algorithms with a reflectance sharing technique based on non-negative matrix factorization in order to reconstruct a joint model of geometry and reflectance. We demonstrate for a number of test scenes that the kaleidoscopic approach can acquire complex reflectance properties faithfully. The main limitation is that the multiplexing approach limits the attainable spatial resolution, trading it off for improved directional coverage.

Projects

Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

Oliver Klehm, Ilya Reshetouski, Elmar Eisemann, Hans-Peter Seidel, Ivo Ihrke
VMV 2012



Abstract

Mirror systems have recently emerged as an alternative low-cost multi-view imaging solution. The use of these systems critically depends on the ability to compute the background of a multiply mirrored object. The images taken in such systems show a fractured, patterned view, making edge-guided segmentation difficult. Further, global illumination and light attenuation due to the mirrors make standard segmentation techniques fail. We therefore propose a system that allows a user to do the segmentation manually. We provide convenient tools that enable an interactive segmentation of kaleidoscopic images containing three-dimensional objects. Hereby, we explore suitable interaction and visualization schemes to guide the user. To achieve interactivity, we employ the GPU in all stages of the application, such as 2D/3D rendering as well as segmentation.
Video Demo Data Set

Bibtex

@InProceedings{Klehm12,
author = {Oliver Klehm, Ilya Reshetouski, Elmar Eisemann, Hans-Peter Seidel, and Ivo Ihrke},
title = "{Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images }",
booktitle = {Proceedings of VMV},
pages = "xx--yy",
year = {2012},
}
Go to project list




Imprint-Dataprotection