Generalized Image Acquisition and Analysis

Eikonal Rendering: Efficient Light Transport in Refractive Objects

We present a new method for real-time rendering of sophisticated lighting effects in and around refractive objects. It enables us to realistically display refractive objects with complex material properties, such as arbitrarily varying refraction index, inhomogeneous attenuation, as well as spatially-varying anisotropic scattering and reflectance properties. User-controlled changes of lighting positions only require a few seconds of update time. Our method is based on a set of ordinary differential equations derived from the eikonal equation, the main postulate of geometric optics. This set of equations allows for fast casting of bent light rays with the complexity of a particle tracer. Based on this concept, we also propose an efficient light propagation technique using adaptive wavefront tracing. Efficient GPU implementations for our algorithmic concepts enable us to render visual effects that were previously not reproducible in this combination in real-time.

Projects

Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering

Art Tevs, Ivo Ihrke, Hans-Peter Seidel
In: Proceedings of I3D 2008.



Abstract

This paper presents a GPU-based, fast, and accurate dynamic height field rendering technique that scales well to large scale height fields. Current real-time rendering algorithms for dynamic height fields employ approximate ray-height field intersection methods, whereas accurate algorithms require pre-computation in the order of seconds to minutes and are thus not suitable for dynamic height field rendering. We alleviate this problem by using maximum mipmaps, a hierarchical data structure supporting accurate and efficient rendering while simultaneously lowering the pre-computation costs to negligible levels. Furthermore, maximum mipmaps allow for view-dependent level-of-detail rendering. In combination with hierarchical ray-stepping this results in an efficient intersection algorithm for large scale height fields.
Project Page Video Slides

Bibtex

@inproceedings{Tevs08:MMM,
author = {Art Tevs and Ivo Ihrke and Hans-Peter Seidel},
title = {Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering},
booktitle = {Symposium on Interactive 3D Graphics and Games (i3D'08)},
year = 2008,
pages = {183--190},
}
Go to project list




Imprint-Dataprotection