Generalized Image Acquisition and Analysis

Three-Dimensional Kaleidoscopic Imaging

Three-dimensional kaleidoscopic imaging, a promising alternative for recording multi-view imagery. The main limitation of multi-view reconstruction techniques is the limited number of views that are available from multi-camera systems, especially for dynamic scenes. Our new system is based on imaging an object inside a kaleidoscopic mirror system. We show that this approach can generate a large number of high-quality views well distributed over the hemisphere surrounding the object in a single shot. In comparison to existing multi-view systems, our method offers a number of advantages: it is possible to operate with a single camera, the individual views are perfectly synchronized, and they have the same radiometric and colorimetric properties. We describe the setup both theoretically, and provide methods for a practical implementation. Enabling interfacing to standard multi-view algorithms for further processing is an important goal of our techniques.

Projects

Measuring BRDFs of Immersed Materials

Kai Berger, Ilya Reshetouski, Marcus Magnor, Ivo Ihrke
In: Proceedings of VMV 2011.



Abstract

We investigate the effect of immersing real-world materials into media of different refractive indices. We show, that only some materials follow the Fresnel-governed behaviour. In reality, many materials exhibit unexpected effects such as stronger localized highlights or a significant increase in the glossy reflection due to microgeometry. In this paper, we propose a new measurement technique that allows for measuring the BRDFs of materials that are immersed into different media.

Bibtex

@InProceedings{Berger11,
author = {Kai Berger and Ilya Reshetouski and Marcus A. Magnor and Ivo Ihrke},
title = "{Measuring BRDFs of Immersed Materials}",
booktitle = {Proceedings of VMV},
pages = "325--330",
year = {2011},
}
Go to project list




Imprint-Dataprotection