Generalized Image Acquisition and Analysis

Fluorescent Immersion Range Scanning

The quality of a 3D range scan should not depend on the surface properties of the object. Most active range scanning techniques, however, assume a diffuse reflector to allow for a robust detection of incident light patterns. In our approach we embed the object into a fluorescent liquid. By analyzing the light rays that become visible due to fluorescence rather than analyzing their reflections off the surface, we can detect the intersection points between the projected laser sheet and the object surface for a wide range of different materials. For transparent objects we can even directly depict a slice through the object in just one image by matching its refractive index to the one of the embedding liquid. This enables a direct sampling of the object geometry without the need for computational reconstruction. This way, a high-resolution 3D volume can be assembled simply by sweeping a laser plane through the object. We demonstrate the effectiveness of our light sheet range scanning approach on a set of objects manufactured from a variety of materials and material mixes, including dark, translucent and transparent objects.

Projects

Performance Capture of High-Speed Motion Using Staggered Multi-View Recording

Di Wu, Yebin Liu, Ivo Ihrke, Qionghai Dai, Christian Theobalt
Pacific Graphics 2012



Abstract

We present a markerless performance capture system that can acquire the motion and the texture of human actors performing fast movements using only commodity hardware. To this end we introduce two novel concepts: First, a staggered surround multi-view recording setup that enables us to perform model-based motion capture on motion-blurred images, and second, a model-based deblurring algorithm which is able to handle disocclusion, self-occlusion and complex object motions. We show that the model-based approach is not only a powerful strategy for tracking but also for deblurring highly complex blur patterns.
Project Page Video

Bibtex

@Article{Wu12,
author = {Di Wu and Yebin Liu and Ivo Ihrke and Qionghai Dai and Christian Theobalt},
title = {Performance Capture of High-Speed Motion Using Staggered Multi-View Recording},
journal = {Computer Graphics Forum},
volume = {31},
number = {7},
year = {2012},
pages = {2019--2028},
publisher = {Blackwell Publishing},
}
Go to project list




Imprint-Dataprotection