Generalized Image Acquisition and Analysis

Interactive Volume Caustics in Single-Scattering Media

Volume caustics are intricate illumination patterns formed by light first interacting with a specular surface and subsequently being scattered inside a participating medium. Although this phenomenon can be simulated by existing techniques, image synthesis is usually non-trivial and time-consuming. Motivated by interactive applications, we propose a novel volume caustics rendering method for single-scattering participating media. Our method is based on the observation that line rendering of illumination rays into the screen buffer establishes a direct light path between the viewer and the light source. This connection is introduced via a single scattering event for every pixel affected by the line primitive. Since the GPU is a parallel processor, the radiance contributions of these light paths to each of the pixels can be computed and accumulated independently. The implementation of our method is straightforward and we show that it can be seamlessly integrated with existing methods for rendering participating media. We achieve high-quality results at real-time frame rates for large and dynamic scenes containing homogeneous participating media. For inhomogeneous media, our method achieves interactive performance that is close to real-time. Our method is based on a simplified physical model and can thus be used for generating physically plausible previews of expensive lighting simulations quickly.

Projects

Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor

Oliver Klehm, Ivo Ihrke, Hans-Peter Seidel, Elmar Eisemann
TVCG 2014



Abstract

Although volumetric phenomena are important for realistic rendering and can even be a crucial component in the image, the artistic control of the volume’s appearance is challenging. Appropriate tools to edit volume properties are missing, which can make it necessary to use simulation results directly. Alternatively, high-level modifications that are rarely intuitive, e.g., the tweaking of noise function parameters, can be utilized. Our work introduces a solution to stylize single-scattering volumetric effects in static volumes. Hereby, an artistic and intuitive control of emission, scattering and extinction becomes possible, while ensuring a smooth and coherent appearance when changing the viewpoint. Our method is based on tomographic reconstruction, which we link to the volumetric rendering equation. It analyzes a number of target views provided by the artist and adapts the volume properties to match the appearance for the given perspectives. Additionally, we describe how we can optimize for the environmental lighting to match a desired scene appearance, while keeping volume properties constant. Finally, both techniques can be combined. We demonstrate several use cases of our approach and illustrate its effectiveness.
Video

Bibtex

@article{Klehm:14,
author = {Oliver Klehm and Ivo Ihrke and Hans-Peter Seidel and Elmar Eisemann},
title = {Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor},
journal = {Transactions of Visualization and Computer Graphics},
year = 2014,
pages = {xx--yy},
}
Go to project list




Imprint-Dataprotection