Generalized Image Acquisition and Analysis

Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering

This paper presents a GPU-based, fast, and accurate dynamic height field rendering technique that scales well to large scale height fields. Current real-time rendering algorithms for dynamic height fields employ approximate ray-height field intersection methods, whereas accurate algorithms require pre-computation in the order of seconds to minutes and are thus not suitable for dynamic height field rendering. We alleviate this problem by using maximum mipmaps, a hierarchical data structure supporting accurate and efficient rendering while simultaneously lowering the pre-computation costs to negligible levels. Furthermore, maximum mipmaps allow for view-dependent level-of-detail rendering. In combination with hierarchical ray-stepping this results in an efficient intersection algorithm for large scale height fields.

Projects

Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor

Oliver Klehm, Ivo Ihrke, Hans-Peter Seidel, Elmar Eisemann
TVCG 2014



Abstract

Although volumetric phenomena are important for realistic rendering and can even be a crucial component in the image, the artistic control of the volume’s appearance is challenging. Appropriate tools to edit volume properties are missing, which can make it necessary to use simulation results directly. Alternatively, high-level modifications that are rarely intuitive, e.g., the tweaking of noise function parameters, can be utilized. Our work introduces a solution to stylize single-scattering volumetric effects in static volumes. Hereby, an artistic and intuitive control of emission, scattering and extinction becomes possible, while ensuring a smooth and coherent appearance when changing the viewpoint. Our method is based on tomographic reconstruction, which we link to the volumetric rendering equation. It analyzes a number of target views provided by the artist and adapts the volume properties to match the appearance for the given perspectives. Additionally, we describe how we can optimize for the environmental lighting to match a desired scene appearance, while keeping volume properties constant. Finally, both techniques can be combined. We demonstrate several use cases of our approach and illustrate its effectiveness.
Video

Bibtex

@article{Klehm:14,
author = {Oliver Klehm and Ivo Ihrke and Hans-Peter Seidel and Elmar Eisemann},
title = {Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor},
journal = {Transactions of Visualization and Computer Graphics},
year = 2014,
pages = {xx--yy},
}
Go to project list