Generalized Image Acquisition and Analysis

Interactive Volume Caustics in Single-Scattering Media

Volume caustics are intricate illumination patterns formed by light first interacting with a specular surface and subsequently being scattered inside a participating medium. Although this phenomenon can be simulated by existing techniques, image synthesis is usually non-trivial and time-consuming. Motivated by interactive applications, we propose a novel volume caustics rendering method for single-scattering participating media. Our method is based on the observation that line rendering of illumination rays into the screen buffer establishes a direct light path between the viewer and the light source. This connection is introduced via a single scattering event for every pixel affected by the line primitive. Since the GPU is a parallel processor, the radiance contributions of these light paths to each of the pixels can be computed and accumulated independently. The implementation of our method is straightforward and we show that it can be seamlessly integrated with existing methods for rendering participating media. We achieve high-quality results at real-time frame rates for large and dynamic scenes containing homogeneous participating media. For inhomogeneous media, our method achieves interactive performance that is close to real-time. Our method is based on a simplified physical model and can thus be used for generating physically plausible previews of expensive lighting simulations quickly.


Sensor Saturation in Fourier Multiplexed Imaging

Gordon Wetzstein, Ivo Ihrke, Wolfgang Heidrich
In: Proceedings of CVPR 2010.


Optically multiplexed image acquisition techniques have become increasingly popular for encoding different exposures, color channels, light-fields, and other properties of light onto two-dimensional image sensors. Recently, Fourier-based multiplexing and reconstruction approaches have been introduced in order to achieve a superior light transmission of the employed modulators and better signal-to-noise characteristics of the reconstructed data. We show in this paper that Fourier-based reconstruction approaches suffer from severe artifacts in the case of sensor saturation, i.e. when the dynamic range of the scene exceeds the capabilities of the image sensor. We analyze the problem, and propose a novel combined optical light modulation and computational reconstruction method that not only suppresses such artifacts, but also allows us to recover a wider dynamic range than existing image-space multiplexing approaches.
Project Page Video


author = {G. Wetzstein and I. Ihrke and W. Heidrich},
title = {{Sensor Saturation in Fourier Multiplexed Imaging}},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {Jun},
year = {2010}
Go to project list