Generalized Image Acquisition and Analysis

Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor

Although volumetric phenomena are important for realistic rendering and can even be a crucial component in the image, the artistic control of the volume’s appearance is challenging. Appropriate tools to edit volume properties are missing, which can make it necessary to use simulation results directly. Alternatively, high-level modifications that are rarely intuitive, e.g., the tweaking of noise function parameters, can be utilized. Our work introduces a solution to stylize single-scattering volumetric effects in static volumes. Hereby, an artistic and intuitive control of emission, scattering and extinction becomes possible, while ensuring a smooth and coherent appearance when changing the viewpoint. Our method is based on tomographic reconstruction, which we link to the volumetric rendering equation. It analyzes a number of target views provided by the artist and adapts the volume properties to match the appearance for the given perspectives. Additionally, we describe how we can optimize for the environmental lighting to match a desired scene appearance, while keeping volume properties constant. Finally, both techniques can be combined. We demonstrate several use cases of our approach and illustrate its effectiveness.


State of the Art in Computational Fabrication and Display of Material Appearance.

Matthias Hullin, Ivo Ihrke, Wolfgang Heidrich, Tim Weyrich, Gerwin Damberg, Martin Fuchs
Eurographics STAR 2013


After decades of research on digital representations of material and object appearance, computer graphics has more recently turned to the problem of creating physical artifacts with controllable appearance characteristics. While this work has mostly progressed in two parallel streams – display technologies as well as novel fabrication processes – we believe there is a large overlap and the potential for synergies between these two approaches. In this report, we summarize research efforts from the worlds of fabrication display, and categorize the different approaches into a common taxonomy. We believe that this report can serve as a basis for systematic exploration of the design space in future research.


author = {Matthias B. Hullin and Ivo Ihrke and Wolfgang Heidrich and Tim Weyrich and Gerwin Damberg and Martin Fuchs},
title = {State of the Art in Computational Fabrication and Display of Material Appearance},
booktitle = {STAR Proceedings of Eurographics},
year = 2013,
pages = {xx--yy},
Go to project list