Generalized Image Acquisition and Analysis

Three-Dimensional Kaleidoscopic Imaging

Three-dimensional kaleidoscopic imaging, a promising alternative for recording multi-view imagery. The main limitation of multi-view reconstruction techniques is the limited number of views that are available from multi-camera systems, especially for dynamic scenes. Our new system is based on imaging an object inside a kaleidoscopic mirror system. We show that this approach can generate a large number of high-quality views well distributed over the hemisphere surrounding the object in a single shot. In comparison to existing multi-view systems, our method offers a number of advantages: it is possible to operate with a single camera, the individual views are perfectly synchronized, and they have the same radiometric and colorimetric properties. We describe the setup both theoretically, and provide methods for a practical implementation. Enabling interfacing to standard multi-view algorithms for further processing is an important goal of our techniques.

Projects

Synchronization and Rolling Shutter Compensation for Consumer Video Camera Arrays

Derek Bradley, Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich
In: Proceedings of PROCAMS 2009 (2nd best paper).



Abstract

Two major obstacles to the use of consumer camcorders in computer vision applications are the lack of synchronization hardware, and the use of a "rolling" shutter, which introduces a temporal shear in the video volume. We present two simple approaches for solving both the rolling shutter shear and the synchronization problem at the same time. The first approach is based on strobe illumination, while the second employs a subframe warp along optical flow vectors. In our experiments we have used the proposed methods to effectively remove temporal shear, and synchronize up to 16 consumer-grade camcorders in multiple geometric configurations.
Project Page

Bibtex

@INPROCEEDINGS{Bradley:2009,
author = {Derek Bradley and Bradley Atcheson and Ivo Ihrke and Wolfgang Heidrich},
title = {Synchronization and Rolling Shutter Compensation for Consumer Video Camera Arrays},
journal = {International Workshop on Projector-Camera Systems (PROCAMS 2009)},
year = {2009},
}
Go to project list




Imprint-Dataprotection