Generalized Image Acquisition and Analysis

Three-Dimensional Kaleidoscopic Imaging

Three-dimensional kaleidoscopic imaging, a promising alternative for recording multi-view imagery. The main limitation of multi-view reconstruction techniques is the limited number of views that are available from multi-camera systems, especially for dynamic scenes. Our new system is based on imaging an object inside a kaleidoscopic mirror system. We show that this approach can generate a large number of high-quality views well distributed over the hemisphere surrounding the object in a single shot. In comparison to existing multi-view systems, our method offers a number of advantages: it is possible to operate with a single camera, the individual views are perfectly synchronized, and they have the same radiometric and colorimetric properties. We describe the setup both theoretically, and provide methods for a practical implementation. Enabling interfacing to standard multi-view algorithms for further processing is an important goal of our techniques.


Three-Dimensional Kaleidoscopic Imaging

Ivo Ihrke, Ilya Reshetouski, Alkhazur Manakov, Hans-Peter Seidel
Computational Optical Sensing and Imaging (COSI) 2012


Planar mirror systems are capable of generating many virtual views, yet their practical use for multi-view imaging has been hindered by limiting configurations that enable view decomposition. In this work we lift those restrictions.
Project Page


author = {Ivo Ihrke and Ilya Reshetouski and Alkhazur Manakov and Hans-Peter Seidel},
booktitle = {Computational Optical Sensing and Imaging},
journal = {Computational Optical Sensing and Imaging},
pages = {CTu4B.8},
publisher = {Optical Society of America},
title = {Three-Dimensional Kaleidoscopic Imaging},
year = {2012},
Go to project list