Generalized Image Acquisition and Analysis

A Theory of Plenoptic Multiplexing

Multiplexing is a common technique for encoding highdimensional image data into a single, two-dimensional image. Examples of spatial multiplexing include Bayer patterns to capture color channels, and integral images to encode light fields. In the Fourier domain, optical heterodyning has been used to acquire light fields. In this paper, we develop a general theory of multiplexing the dimensions of the plenoptic function onto an image sensor. Our theory enables a principled comparison of plenoptic multiplexing schemes, including noise analysis, as well as the development of a generic reconstruction algorithm. The framework also aides in the identification and optimization of novel multiplexed imaging applications.

Projects

Three-Dimensional Kaleidoscopic Imaging

Ivo Ihrke, Ilya Reshetouski, Alkhazur Manakov, Hans-Peter Seidel
Computational Optical Sensing and Imaging (COSI) 2012



Abstract

Planar mirror systems are capable of generating many virtual views, yet their practical use for multi-view imaging has been hindered by limiting configurations that enable view decomposition. In this work we lift those restrictions.
Project Page

Bibtex

@inproceedings{Ihrke:12,
author = {Ivo Ihrke and Ilya Reshetouski and Alkhazur Manakov and Hans-Peter Seidel},
booktitle = {Computational Optical Sensing and Imaging},
journal = {Computational Optical Sensing and Imaging},
pages = {CTu4B.8},
publisher = {Optical Society of America},
title = {Three-Dimensional Kaleidoscopic Imaging},
year = {2012},
}
Go to project list




Imprint-Dataprotection