Generalized Image Acquisition and Analysis

Interactive Volume Caustics in Single-Scattering Media

Volume caustics are intricate illumination patterns formed by light first interacting with a specular surface and subsequently being scattered inside a participating medium. Although this phenomenon can be simulated by existing techniques, image synthesis is usually non-trivial and time-consuming. Motivated by interactive applications, we propose a novel volume caustics rendering method for single-scattering participating media. Our method is based on the observation that line rendering of illumination rays into the screen buffer establishes a direct light path between the viewer and the light source. This connection is introduced via a single scattering event for every pixel affected by the line primitive. Since the GPU is a parallel processor, the radiance contributions of these light paths to each of the pixels can be computed and accumulated independently. The implementation of our method is straightforward and we show that it can be seamlessly integrated with existing methods for rendering participating media. We achieve high-quality results at real-time frame rates for large and dynamic scenes containing homogeneous participating media. For inhomogeneous media, our method achieves interactive performance that is close to real-time. Our method is based on a simplified physical model and can thus be used for generating physically plausible previews of expensive lighting simulations quickly.

Projects

Three-Dimensional Kaleidoscopic Imaging

Ivo Ihrke, Ilya Reshetouski, Alkhazur Manakov, Hans-Peter Seidel
Computational Optical Sensing and Imaging (COSI) 2012



Abstract

Planar mirror systems are capable of generating many virtual views, yet their practical use for multi-view imaging has been hindered by limiting configurations that enable view decomposition. In this work we lift those restrictions.
Project Page

Bibtex

@inproceedings{Ihrke:12,
author = {Ivo Ihrke and Ilya Reshetouski and Alkhazur Manakov and Hans-Peter Seidel},
booktitle = {Computational Optical Sensing and Imaging},
journal = {Computational Optical Sensing and Imaging},
pages = {CTu4B.8},
publisher = {Optical Society of America},
title = {Three-Dimensional Kaleidoscopic Imaging},
year = {2012},
}
Go to project list