Generalized Image Acquisition and Analysis

Sensor Saturation in Fourier Multiplexed Imaging

Optically multiplexed image acquisition techniques have become increasingly popular for encoding different exposures, color channels, light-fields, and other properties of light onto two-dimensional image sensors. Recently, Fourier-based multiplexing and reconstruction approaches have been introduced in order to achieve a superior light transmission of the employed modulators and better signal-to-noise characteristics of the reconstructed data. We show in this paper that Fourier-based reconstruction approaches suffer from severe artifacts in the case of sensor saturation, i.e. when the dynamic range of the scene exceeds the capabilities of the image sensor. We analyze the problem, and propose a novel combined optical light modulation and computational reconstruction method that not only suppresses such artifacts, but also allows us to recover a wider dynamic range than existing image-space multiplexing approaches.


Time-resolved 3D Capture of Non-stationary Gas Flows

Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, Hans-Peter Seidel
In: Proceedings of SIGGRAPH Asia 2008.


Fluid simulation is one of the most active research areas in computer graphics. However, it remains difficult to obtain measurements of real fluid flows for validation of the simulated data. In this paper, we take a step in the direction of capturing flow data for such purposes. Specifically, we present the first time-resolved Schlieren tomography system for capturing full 3D, non-stationary gas flows on a dense volumetric grid. Schlieren tomography uses 2D ray deflection measurements to reconstruct a time-varying grid of 3D refractive index values, which directly correspond to physical properties of the flow. We derive a new solution for this reconstruction problem that lends itself to efficient algorithms to robustly work with relatively small numbers of cameras. Our physical system is easy to set up, and consists of an array of relatively low cost rolling-shutter camcorders that are synchronized with a new approach. We demonstrate our method with real measurements, and analyze precision with synthetic data for which ground truth information is available.
Project Page Video


author = {Bradley Atcheson and Ivo Ihrke and Wolfgang Heidrich and Art Tevs and Derek Bradley and Marcus Magnor and Hans-Peter Seidel},
title = {Time-resolved 3D Capture of Non-stationary Gas Flows},
journal = {ACM Transactions on Graphics (Proc. SIGGRAPH Asia)},
year = {2008},
volume = {27},
number = {5},
pages = {132},
Go to project list