Generalized Image Acquisition and Analysis

On Plenoptic Multiplexing and Reconstruction

Photography has been striving to capture an ever increasing amount of visual information in a single image. Digital sensors, however, are limited to recording a small subset of the desired information at each pixel. A common approach to overcoming the limitations of sensing hardware is the optical multiplexing of high-dimensional data into a photograph. While this is a well-studied topic for imaging with color filter arrays, we develop a mathematical framework that generalizes multiplexed imaging to all dimensions of the plenoptic function. This framework unifies a wide variety of existing approaches to analyze and reconstruct multiplexed data in either the spatial or the frequency domain. We demonstrate many practical applications of our framework including high-quality light field reconstruction, the first comparative noise analysis of light field attenuation masks, and an analysis of aliasing in multiplexing applications.


Time-resolved 3D Capture of Non-stationary Gas Flows

Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, Hans-Peter Seidel
In: Proceedings of SIGGRAPH Asia 2008.


Fluid simulation is one of the most active research areas in computer graphics. However, it remains difficult to obtain measurements of real fluid flows for validation of the simulated data. In this paper, we take a step in the direction of capturing flow data for such purposes. Specifically, we present the first time-resolved Schlieren tomography system for capturing full 3D, non-stationary gas flows on a dense volumetric grid. Schlieren tomography uses 2D ray deflection measurements to reconstruct a time-varying grid of 3D refractive index values, which directly correspond to physical properties of the flow. We derive a new solution for this reconstruction problem that lends itself to efficient algorithms to robustly work with relatively small numbers of cameras. Our physical system is easy to set up, and consists of an array of relatively low cost rolling-shutter camcorders that are synchronized with a new approach. We demonstrate our method with real measurements, and analyze precision with synthetic data for which ground truth information is available.
Project Page Video


author = {Bradley Atcheson and Ivo Ihrke and Wolfgang Heidrich and Art Tevs and Derek Bradley and Marcus Magnor and Hans-Peter Seidel},
title = {Time-resolved 3D Capture of Non-stationary Gas Flows},
journal = {ACM Transactions on Graphics (Proc. SIGGRAPH Asia)},
year = {2008},
volume = {27},
number = {5},
pages = {132},
Go to project list