Generalized Image Acquisition and Analysis

Intrinsic Shape Matching by Planned Landmark Sampling

Recently, the problem of intrinsic shape matching has received a lot of attention. A number of algorithms have been proposed, among which random-sampling-based techniques have been particularly successful due to their generality and efficiency. We introduce a new sampling-based shape matching algorithm that uses a planning step to find optimized "landmark" points. These points are matched first in order to maximize the information gained and thus minimize the sampling costs. Our approach makes three main contributions: First, the new technique leads to a significant improvement in performance, which we demonstrate on a number of benchmark scenarios. Second, our technique does not require any keypoint detection. This is often a significant limitation for models that do not show sufficient surface features. Third, we examine the actual numerical degrees of freedom of the matching problem for a given piece of geometry. In contrast to previous results, our estimates take into account unprecise geodesics and potentially numerically unfavorable geometry of general topology, giving a more realistic complexity estimate.

Projects

Time-resolved 3D Capture of Non-stationary Gas Flows

Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, Hans-Peter Seidel
In: Proceedings of SIGGRAPH Asia 2008.



Abstract

Fluid simulation is one of the most active research areas in computer graphics. However, it remains difficult to obtain measurements of real fluid flows for validation of the simulated data. In this paper, we take a step in the direction of capturing flow data for such purposes. Specifically, we present the first time-resolved Schlieren tomography system for capturing full 3D, non-stationary gas flows on a dense volumetric grid. Schlieren tomography uses 2D ray deflection measurements to reconstruct a time-varying grid of 3D refractive index values, which directly correspond to physical properties of the flow. We derive a new solution for this reconstruction problem that lends itself to efficient algorithms to robustly work with relatively small numbers of cameras. Our physical system is easy to set up, and consists of an array of relatively low cost rolling-shutter camcorders that are synchronized with a new approach. We demonstrate our method with real measurements, and analyze precision with synthetic data for which ground truth information is available.
Project Page Video

Bibtex

@ARTICLE{Atcheson:2008,
author = {Bradley Atcheson and Ivo Ihrke and Wolfgang Heidrich and Art Tevs and Derek Bradley and Marcus Magnor and Hans-Peter Seidel},
title = {Time-resolved 3D Capture of Non-stationary Gas Flows},
journal = {ACM Transactions on Graphics (Proc. SIGGRAPH Asia)},
year = {2008},
volume = {27},
number = {5},
pages = {132},
}
Go to project list




Imprint-Dataprotection