Generalized Image Acquisition and Analysis

Interactive Volume Caustics in Single-Scattering Media

Volume caustics are intricate illumination patterns formed by light first interacting with a specular surface and subsequently being scattered inside a participating medium. Although this phenomenon can be simulated by existing techniques, image synthesis is usually non-trivial and time-consuming. Motivated by interactive applications, we propose a novel volume caustics rendering method for single-scattering participating media. Our method is based on the observation that line rendering of illumination rays into the screen buffer establishes a direct light path between the viewer and the light source. This connection is introduced via a single scattering event for every pixel affected by the line primitive. Since the GPU is a parallel processor, the radiance contributions of these light paths to each of the pixels can be computed and accumulated independently. The implementation of our method is straightforward and we show that it can be seamlessly integrated with existing methods for rendering participating media. We achieve high-quality results at real-time frame rates for large and dynamic scenes containing homogeneous participating media. For inhomogeneous media, our method achieves interactive performance that is close to real-time. Our method is based on a simplified physical model and can thus be used for generating physically plausible previews of expensive lighting simulations quickly.

Projects

Volume Stylizer: Tomography-based Volume Painting

Oliver Klehm, Ivo Ihrke, Hans-Peter Seidel, Elmar Eisemann
I3D 2013



Abstract

Volumetric phenomena are an integral part of standard rendering, yet, no suitable tools to edit characteristic properties are available so far. Either simulation results are used directly, or modifications are high-level, e.g., noise functions to influence appearance. Intuitive artistic control is not possible. We propose a solution to stylize single-scattering volumetric effects. Emission, scattering and extinction become amenable to artistic control while preserving a smooth and coherent appearance when changing the viewpoint. Our approach lets the user define a number of target views to be matched when observing the volume from this perspective. Via an analysis of the volumetric rendering equation, we can show how to link this problem to tomographic reconstruction.
Video Slides

Bibtex

@inproceedings{Klehm:13,
author = {Oliver Klehm and Ivo Ihrke and Hans-Peter Seidel and Elmar Eisemann},
title = {Volume Stylizer: Tomography-based Volume Painting},
booktitle = {Symposium on Interactive 3D Graphics and Games (i3D'13)},
year = 2013,
pages = {xx--yy},
}
Go to project list




Imprint-Dataprotection