Generalized Image Acquisition and Analysis

On Plenoptic Multiplexing and Reconstruction

Photography has been striving to capture an ever increasing amount of visual information in a single image. Digital sensors, however, are limited to recording a small subset of the desired information at each pixel. A common approach to overcoming the limitations of sensing hardware is the optical multiplexing of high-dimensional data into a photograph. While this is a well-studied topic for imaging with color filter arrays, we develop a mathematical framework that generalizes multiplexed imaging to all dimensions of the plenoptic function. This framework unifies a wide variety of existing approaches to analyze and reconstruct multiplexed data in either the spatial or the frequency domain. We demonstrate many practical applications of our framework including high-quality light field reconstruction, the first comparative noise analysis of light field attenuation masks, and an analysis of aliasing in multiplexing applications.

Teaching

winter term 2014/15

Lectures

winter term 2013/14

Advanced Display Technology
Ivo Ihrke, Pascal Picart

winter term 2012/13

Seminars

Parallel Visual Computing
Ivo Ihrke, Tobias Ritschel, Mario Fritz

summer term 2012

Lectures

Computational Photography
Ivo Ihrke
Universität des Saarlandes


winter term 2011/12

Seminars

summer term 2011

Lectures

Computational Photography
Ivo Ihrke
Universität des Saarlandes / JKU Linz
Hispos

winter term 2010/11

Seminars

Research Topics in Computational Photography (project-based seminar)
Ivo Ihrke

summer term 2010

Lectures

Computational Photography
Ivo Ihrke, Matthias Hullin
Universität des Saarlandes

winter term 2009/10

Seminars

Computational Photography and Videography
Ivo Ihrke, Christian Theobalt



Imprint-Dataprotection