Generalized Image Acquisition and Analysis

Animation Cartography - Intrinsic Reconstruction of Shape and Motion

In this paper, we consider the problem of animation reconstruction, i.e., the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user provided template models. Unlike pre- vious work that addressed this problem, we do not rely on locally conver- gent optimization but present a system that can handle fast motion, tem- porally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspon- dences, which are extended to a dense matching and then used to recon- struct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and inco- herent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark data sets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.


Advanced Display Technology

Lecture in winter term 2013/14

Lecturers: Ivo Ihrke, Pascal Picart

General Information

Course webpage - Libres Savoirs

When: 2014, Jan. 08th to 2014, Feb. 5th
Where: IOA/IOGS buiding room E200
Registration for mailing list: send email to Ivo Ihrke (firstname[dot]lastname[at]


In the first part, this lecture covers advanced display technology such as projector arrays, projection onto non-planar surfaces, field-of-view extension, depth-of-field extension, dynamic range extension, and 3D display technology, focussing on glasses-free techniques. In the second part, we will discuss holographic techniques, recording principles, noise issues (speckle), and computational aspects for Computer Generated Holography.

The tentative course schedule is

Wednesday 08.01.2014, 8am Introduction and Field of View Extensions / Projector Arrays / Depth-of-Field (II) [pdf]
Wednesday 15.01.2014, 8am High Dynamic Range, Light-Sensitive Displays, 3D Display Overview (II) [pdf]
Wednesday 22.01.2014, 8am 3D Display Technology (II) [pdf]
Monday 03.02.2014, 8am Introduction Holography (PP) [pdf]
Monday 03.02.2014, 10am Speckles (PP) [pdf]
Tuesday 04.02.2014, 10am Diffraction and its Numerical Computation (PP) [pdf]
Tuesday 04.02.2014, 10am Computer Generated Holography (PP) [pdf]

Q: Could you provide the bibliography on the holographic part of the course ?
A: Yes: [pdf]

Go back to lecture list