Generalized Image Acquisition and Analysis

On Plenoptic Multiplexing and Reconstruction

Photography has been striving to capture an ever increasing amount of visual information in a single image. Digital sensors, however, are limited to recording a small subset of the desired information at each pixel. A common approach to overcoming the limitations of sensing hardware is the optical multiplexing of high-dimensional data into a photograph. While this is a well-studied topic for imaging with color filter arrays, we develop a mathematical framework that generalizes multiplexed imaging to all dimensions of the plenoptic function. This framework unifies a wide variety of existing approaches to analyze and reconstruct multiplexed data in either the spatial or the frequency domain. We demonstrate many practical applications of our framework including high-quality light field reconstruction, the first comparative noise analysis of light field attenuation masks, and an analysis of aliasing in multiplexing applications.


Advanced Display Technology

Lecture in winter term 2013/14

Lecturers: Ivo Ihrke, Pascal Picart

General Information

Course webpage - Libres Savoirs

When: 2014, Jan. 08th to 2014, Feb. 5th
Where: IOA/IOGS buiding room E200
Registration for mailing list: send email to Ivo Ihrke (firstname[dot]lastname[at]


In the first part, this lecture covers advanced display technology such as projector arrays, projection onto non-planar surfaces, field-of-view extension, depth-of-field extension, dynamic range extension, and 3D display technology, focussing on glasses-free techniques. In the second part, we will discuss holographic techniques, recording principles, noise issues (speckle), and computational aspects for Computer Generated Holography.

The tentative course schedule is

Wednesday 08.01.2014, 8am Introduction and Field of View Extensions / Projector Arrays / Depth-of-Field (II) [pdf]
Wednesday 15.01.2014, 8am High Dynamic Range, Light-Sensitive Displays, 3D Display Overview (II) [pdf]
Wednesday 22.01.2014, 8am 3D Display Technology (II) [pdf]
Monday 03.02.2014, 8am Introduction Holography (PP) [pdf]
Monday 03.02.2014, 10am Speckles (PP) [pdf]
Tuesday 04.02.2014, 10am Diffraction and its Numerical Computation (PP) [pdf]
Tuesday 04.02.2014, 10am Computer Generated Holography (PP) [pdf]

Q: Could you provide the bibliography on the holographic part of the course ?
A: Yes: [pdf]

Go back to lecture list