Generalized Image Acquisition and Analysis

Time-resolved 3D Capture of Non-stationary Gas Flows

Fluid simulation is one of the most active research areas in computer graphics. However, it remains difficult to obtain measurements of real fluid flows for validation of the simulated data. In this paper, we take a step in the direction of capturing flow data for such purposes. Specifically, we present the first time-resolved Schlieren tomography system for capturing full 3D, non-stationary gas flows on a dense volumetric grid. Schlieren tomography uses 2D ray deflection measurements to reconstruct a time-varying grid of 3D refractive index values, which directly correspond to physical properties of the flow. We derive a new solution for this reconstruction problem that lends itself to efficient algorithms to robustly work with relatively small numbers of cameras. Our physical system is easy to set up, and consists of an array of relatively low cost rolling-shutter camcorders that are synchronized with a new approach. We demonstrate our method with real measurements, and analyze precision with synthetic data for which ground truth information is available.

Teaching

Computational Optical Imaging

Lecture in winter term 2013/14

Lecturer: Ivo Ihrke

General Information

Course webpage - Libres Savoirs -->

When: 2013, Sept. 09th to 2013, Oct. 28th
Where: IOA/IOGS buiding room F102
Registration for mailing list: send email to Ivo Ihrke (firstname[dot]lastname[at]inria.fr)

Overview:

This lecture covers advanced digital imaging techniques for image correction and calibration, as well as algorithms and optical considerations for the extraction of three-dimensional content from (sets of) images. We explore the notion of computional-optical codesign and modern high-dimensional imaging techniques.

The tentative course schedule is


Tuesday 10.09.2013 Introduction and Sensor Technology [pdf intro] [pdf sensors]
Thursday 12.09.2013 Noise, Dynamic Range, and Color [pdf noise/dr/color]
Monday 16.09.2013 Imaging Imperfections, Panoramas and the Basics of 3D [pdf panoramas&3D]
Monday 23.09.2013 Camera Calibration and Feature Detection [pdf calibration&features]
Monday 30.09.2013 Stereo and Self-Calibration [pdf stereo&self-calibration]
Thursday 03.10.2013 Active 3D Scanning [pdf active light 3D]
Monday 07.10.2013 Tomography [pdf tomography]
Monday 14.10.2013 Deconvolution [pdf deconvolution]
Monday 21.10.2013 Light Fields [pdf light fields]
Thursday 24.10.2013 Introduction to Variational Image Processing (original slides by Bastian Goldluecke) [pdf intro] [pdf variational analysis] [pdf gradient descent]

FAQ:


Go back to lecture list