Generalized Image Acquisition and Analysis

Computational Plenoptic Imaging

The plenoptic function is a ray-based model for light that includes the color spectrum as well as spatial, temporal, and directional variation. Although digital light sensors have greatly evolved in the last years, one fundamental limitation remains: all standard CCD and CMOS sensors integrate over the dimensions of the plenoptic function as they convert photons into electrons; in the process, all visual information is irreversibly lost, except for a two-dimensional, spatially-varying subset - the common photograph. In this state of the art report, we review approaches that optically encode the dimensions of the plenpotic function transcending those captured by traditional photography and reconstruct the recorded information computationally.


Parallel Visual Computing

Seminar in winter term 2012/13

Lecturers: Ivo Ihrke, Tobias Ritschel, Mario Fritz

General Information

Course webpage

When: 2012, Oct. 18th to 2013, Jan. 31st
Where: E1.7 room 0.01
Registration for mailing list: send email to Ivo Ihrke (


This seminar covers the hands-on use of parallel hardware (CPUs and GPUs) for visual computing, i.e.,

  • Computer vision (e.g., from simple image operations to classification)
  • Computer graphics (e.g., advanced shading)
  • Scientific computing (e.g., equation solving)

The target audience are students in computer science or related fields. Good C++ programming skills, basic knowledge about 3D geometry, image processing, and computer graphics are required. This seminar will be based on hands-on parallel programming:

  • Every one week, a tutor will present a problem with an interesting parallel solution.
  • On the same day there will be a programming assignment on the topic.
  • Teams of two people will work on this assignment
  • Every team demos their solution and we discuss


Go back to lecture list