Generalized Image Acquisition and Analysis

A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging

We propose a non-permanent add-on that enables plenoptic imaging with standard cameras which we refer to as KaleidoCamera. Our design is based on a physical copying mechanism that multiplies a sensor image into a number of identical copies that still carry the plenoptic information of interest. Via different optical filters, we can then recover the desired information. A minor modification of the design also allows for aperture subsampling and, hence, light-field imaging. As the filters in our design are exchangeable, a reconfiguration for different imaging purposes is possible. We show in a prototype setup that high dynamic range, multispectral, polarization, and light-field imaging can be achieved with our design.


Parallel Visual Computing

Seminar in winter term 2012/13

Lecturers: Ivo Ihrke, Tobias Ritschel, Mario Fritz

General Information

Course webpage

When: 2012, Oct. 18th to 2013, Jan. 31st
Where: E1.7 room 0.01
Registration for mailing list: send email to Ivo Ihrke (


This seminar covers the hands-on use of parallel hardware (CPUs and GPUs) for visual computing, i.e.,

  • Computer vision (e.g., from simple image operations to classification)
  • Computer graphics (e.g., advanced shading)
  • Scientific computing (e.g., equation solving)

The target audience are students in computer science or related fields. Good C++ programming skills, basic knowledge about 3D geometry, image processing, and computer graphics are required. This seminar will be based on hands-on parallel programming:

  • Every one week, a tutor will present a problem with an interesting parallel solution.
  • On the same day there will be a programming assignment on the topic.
  • Teams of two people will work on this assignment
  • Every team demos their solution and we discuss


Go back to lecture list